Instituto de Engenharia SP Departamento de Engenharia Civil Divisão de Estruturas

CONFORMIDADE DO CONCRETO EM ESTRUTURAS

Paulo Helene

Diretor da PhD Engenharia e Consultoria
Prof. Titular da Universidade de São Paulo USP
Conselheiro do Instituto Brasileiro do Concreto IBRACON
Member of **fib**(CEB-FIP) Model Code for Service Life Design
Presidente de la Asociación Latinoamericana de Control de
Calidad, Patología y Recuperación de la Construcción ALCONPAT

Definições

- $f_{\rm cd}$ ightarrow resistência de projeto do concreto à compressão para qualquer idade
- σ_{cd} \rightarrow tensão de compressão do concreto máxima a qualquer idade adotada no projeto
- f_{ck} \rightarrow resistência característica do concreto à compressão especificada no projeto estrutural (28dias) (f_{ck})
- $f_{ck,est}$ \rightarrow resistência característica do concreto à compressão estimada a partir de cps moldados (28 dias)
- $f_{ck,ef}$ \rightarrow resistência característica do concreto à compressão efetiva (real) do concreto na estrutura a qualquer idade
- $f_{ck,ext}$ \rightarrow resistência característica do concreto à compressão obtida a partir de testemunhos extraídos a qualquer idade

sumário

- 1. Pesquisas de doutorado;
- 2. NBR 12655:2006. Variáveis intervenientes;
- 3. NBR 7680:2007. Variáveis intervenientes;
- 4. Critérios de introdução da segurança NBR
 - 8681:2003 e NBR 6118:2003. Outras normas;
- 5. Texto da ABECE.

TESEs de DOUTORADO

CREMONINI, R. A. Análise de Estruturas Acabadas: Contribuição para a Determinação da Relação entre as Resistências Potencial e Efetiva do Concreto. São Paulo, EPUSP, 1994.

Ruy Alberto Cremonini. Prof. Associado, UFRGS

OBJETIVO

- Comparação entre a resistência potencial e efetiva do concreto em obras convencionais de edificação em execução. Contribuição ao estudo do γ_c .
- **Resistência potencial** = corpos de prova cilíndricos moldados NBR 5738 / 5739 (28dias) *10cm x 20cm*
- **Resistência efetiva** = testemunhos cilindricos extraídos conforme NBR 7680 / 5739 (28dias) *10cm x 20cm*

EXPERIMENTO

■ 10 obras correntes de edifícios habitacionais em fase de execução das estruturas de concreto. Resistência à compressão 20MPa $< f_{ck} <$ 35MPa.

Pilares

- 06 obras → concreto produzido na obra (500L)
- 17 lotes \rightarrow 17 and ares
- volume total de concreto 129 m³
- média de 6 cps moldados por lote → 28dias
- média de 6 cps extraídos por lote → 28dias
- extração no terço inferior (arranque)
- $102 \text{ cps} \rightarrow 102 \text{ testemunhos}$

EXPERIMENTO

Lajes e (vigas)

- 06 obras → concreto de Central
- cps extraídos das lajes maciças 10cm a 15cm
- 15 lotes (lajes e vigas) → 15 andares
- 8 a 11 caminhões por andar
- volume total de concreto de 1.195 m³
- 2 cps / caminhão → vale maior
- média de 6cps extraídos por lote → 28dias
- média dos n exemplares moldados do lote → 28dias
- 90 cps extraídos 7,5cm x altura laje
- 142 exemplares moldados *10cm x 20cm*

RESULTADOS

Lote	$f_c/f_{c,ext}$	Lote	$f_{ m c}/f_{ m c,ext}$	Lote	$f_{c}/f_{c,ext}$	Lote	$f_c/f_{c,ext}$
OB1L1	1,07	OB4L1	1,14	OB6L3	1,18	OB9L2	1,21
OB1L2	1,25	OB4L2	1,39	OB7L1	1,38	OB9L3	1,29
OB2L1	1,12	OB4L3	1,40	OB7L2	1,19	OB10L1	1,39
OB2L2	1,31	OB5L1	1,05	OB7L3	0,96	OB10L2	1,62
OB2L3	1,18	OB5L2	1,51	OB8L1	1,09	OB10L3	1,05
OB3L1	1,18	OB5L3	1,45	OB8L2	1,02	OB11L1	1,46
OB3L2	1,23	OB6L1	1,17	OB8L3	1,13	OB11L2	1,36
OB3L3	1,33	OB6L2	1,40	OB9L1	0,99	OB12L1	1,11

 $f_c/f_{c,ext}$ = relação entre a resistência média de corpos de prova moldados e resistência média de testemunhos

Obras 1 a 6 – Pilares Obras 7 a 12 – Lajes e (vigas)

RESULTADOS $f_c/f_{c,ext} \approx f_{ck}/f_{ck,ext}$

estatística	pilares	lajes e (vigas)
mínimo	1.05	0.96
máximo	1.51	1.62
média	1.26	1.21
s_c	0.14	0.19
$oldsymbol{v_c}$	11%	16%
	φ _{moldado} ≈φ _{extraído}	$\Phi_{\text{moldado}} > \Phi_{\text{extraído}}$
	h/d=2	h/d≠2
	cp _{ext} ortogonal lanç.	cp _{ext} paralelo lanç.

Conclusões

obs.: os valores de $f_c/f_{c,ext} \approx f_{ck}/f_{ck,ext}$ entre 1,01 e 1,40 correspondem a 89% dos resultados obtidos

pilares:

$$\eta = \frac{f_c}{f_{c,ext}} = \frac{f_{ck}}{f_{ck,ext}} = 1.25$$

lajes & (vigas)

$$\eta = \frac{f_c}{f_{c,ext}} = \frac{f_{ck}}{f_{ck,ext}} = 1.20$$

Conclusões - pilares

$$\eta = \frac{f_c}{f_{c,ext}} = \frac{f_{ck}}{f_{ck,ext}} = 1.25$$

$$f_{cd} = \frac{f_{ck}}{\gamma_c} = \frac{f_{ck}}{1.4}$$

$$f_{cd} = \frac{f_{ck,ext} \bullet \eta}{\gamma_c} = \frac{f_{ck,ext} \bullet 1.25}{1.4} = \frac{f_{ck,ext}}{1.12}$$

Conclusões

pilares:

$$f_{ck,ext}$$
•1.25

lajes & (vigas):

 $f_{ck,ext}$ •1.20

fib(CEB-FIP) bulletin n.2. v.2. July 1999. Structural Concrete. updating CEB/FIP Model Code 90 item 6.3 p. 59 $\rightarrow \eta \rightarrow 1.11 \ a \ 1.20 \rightarrow 1.18$

EUROCODE 2. EN1992. Dec. 2004. Design of Concrete Structures. General Rules for Buildings Annex A item A.2.3 → EN 13791 Assessment of Concrete Compressive Strength

in Structures or in Structural Elements. p. 200 $\rightarrow \eta \rightarrow 1.18$

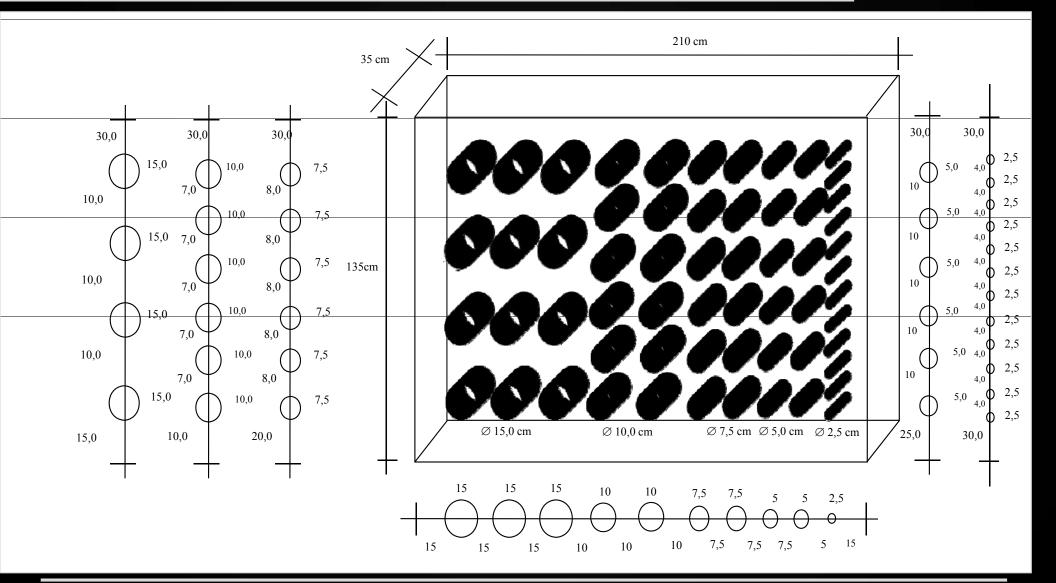
TESEs de DOUTORADO

VIEIRA Filho, J. O. Avaliação da Resistência à Compressão do Concreto através de Testemunhos Extraídos: Contribuição à Estimativa do Coeficiente de Correção devido aos Efeitos do Broqueamento. São Paulo, EPUSP, 2007.

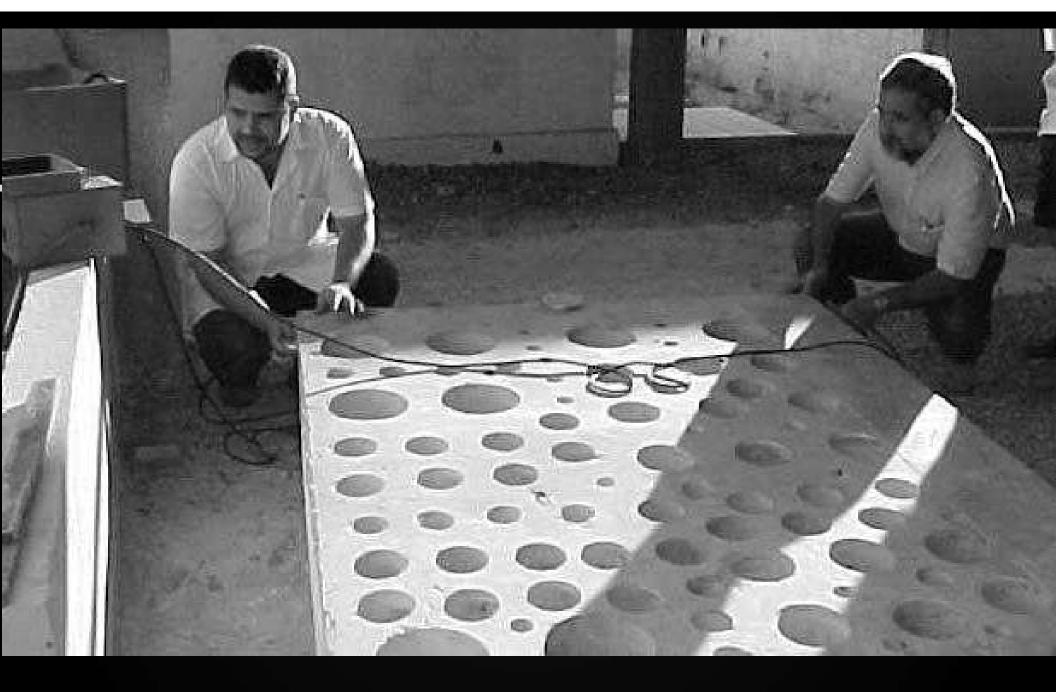
José Orlando Vieira Filho. Prof. Titular UNICAP

OBJETIVO

- Comparação entre a resistência potencial e a efetiva do concreto em paredes/blocos moldados especificamente para esse propósito (lab.). Contribuição ao estudo do efeito deletério de broqueamento.
- **Resistência potencial** → 480 corpos de prova cilíndricos moldados NBR 5738 / 5739 (28dias) *10cm x 20cm & 15cm x 30cm*
- Resistência efetiva → 930 testemunhos cilindricos extraídos conforme NBR 7680 / 5739 (28dias) 15cm x 30cm; 10cm x 20cm; 7.5cm x 15cm; 5cm x 10cm e 2.5cm x 5cm


EXPERIMENTO

- 56 blocos/paredes de espessura de 35cm x 2.10m altura x 1.45 m construídos no canteiro de uma Central de concreto. Situação ideal!
- Resistências à compressão de: 20MPa; 40MPa; 50MPa; 65MPa e 70MPa.
- Cura seca e cura úmida;
- Idade de 28dias e 91dias e slump 100mm;
- Direção de extração ortogonal à concretagem.


BLOCO TIPO (210X135X35)cm

Parede/bloco perfurada

Conclusões

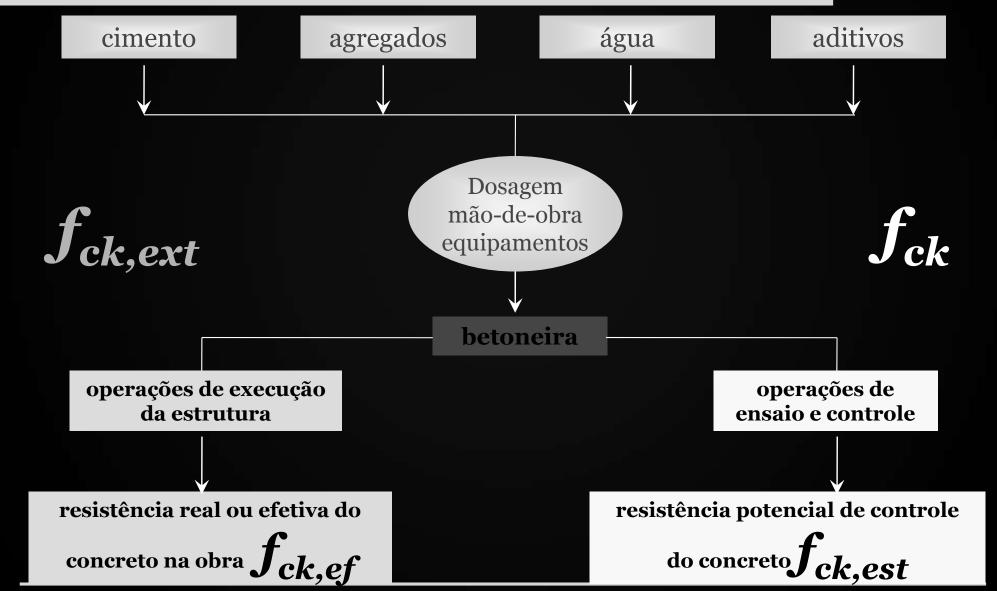
1. os valores de $f_c/f_{c,ext} \approx f_{ck}/f_{ck,ext}$ entre 1,01 e 1,40 correspondem a 100% dos resultados obtidos

2. todos:

$$\eta = \frac{f_c}{f_{c,ext}} = \frac{f_{ck}}{f_{ck,ext}} = 1.07$$

- 3. Os testemunhos de diâmetro 5cm e 2.5cm tendem a médias superiores porém maior variabilidade. Refletem melhor quando f_c é igual ou superior a 50MPa.
- 4. Vale a pena consultar as demais conclusões...

NBR 12655:2006



Fatores intervenientes no valor de $f_{ck,est}$ a partir de cps moldados, ou seja, na produção e controle do concreto

MERCER, L.B.Ready-mixed concrete: quality control refinements. London CCA. 1994 → listou 60 fatores de interferência na resistência medida nos

fatores	-	interferência
intervenientes		
materiais		
	var. fc do cimento	± 12%
	var. água	± 15%
	var. agreg.	± 8 %
mão-de-obra		
	falhas de operação	- 30%
equipamento		
	falta aferição	- 15%
operações de ensaio		
	amostragem	- 10%
	falha adensamento	- 50%
	cura	- 10%
	remate topos	- 50%
	ruptura	± 5%

Premissas

- Controle da resistência do concreto em conformidade com NBR 6118:2003 Projeto de Estruturas de Concreto
- Controle da resistência do concreto em conformidade com NBR 12655:2006 Preparo, Controle e Recebimento
- Auto-controle de produção do concreto em conformidade com NBR 12655:2003 Preparo, Controle e Recebimento
- Auto-controle de produção do concreto em conformidade com NBR 7212:1984 Execução de Concreto Dosado em Central

Apesar de todos esses procedimentos existirem, podem ocorrer dúvidas quanto aos valores obtidos nos controles de aceitação ou recebimento, ou seja, dúvidas sobre $f_{ck,est}$

O resultado final $\overline{\mathrm{de}f_{ck,est}}$ depende:

- > da variabilidade da produção;
- da representatividade da amostragem;

das operações de ensaio

Portanto é conveniente suspeitar que houve falha nas operações de ensaio de controle sempre que:

- a coleta de concreto é feita na entrada da obra;
- * os cps são moldados inadequadamente;
- os cps são transportados no mesmo dia;
- os cps ficam no sol;
- os cps são mal transportados;
- os resultados não crescem
- os resultados de irmãos são díspares

Portanto é conveniente suspeitar que houve falha nas operações de ensaio de controle sempre que:

- * a coleta de concreto é feita na entrada da obra;
- os cps são transportados no mesmo dia;
- * os cps ficam no sol;
- os cps são mal transportados;
- os resultados não crescem
- os resultados de irmãos são díspares

Portanto é conveniente suspeitar que houve falha nas operações de ensaio de controle sempre que:

- * a coleta de concreto é feita na entrada da obra;
- os cps são transportados no mesmo dia;
- os cps ficam no sol;
- os cps são mal transportados;
- * os resultados não crescem;
- os resultados de irmãos são díspares

31

•		consistência		tência à pressão	crescimento
ordem	nota fiscal	do concreto fresco	7 dias	28 dias	de 7 para 28 dias
			7-Apr-09	28-Apr-09	
1	206099	686	48.9	50.2	1.027
2	206100	736	53.6	54.8	1.022
3	206101	746	57.1	57.8	1.012
4	206102	753	51.0	51.4	1.008
5	206103	743	44.0	53.6	1.218
6	206105	726	56.2	57.7	1.027
7	206106	730	50.4	52.0	1.032
8	206109	750	56.5	57.0	1.009
9	206110	720	53.8	54.7	1.017
					1

1.041	54.4	52.4	média em MPa
0.063	2.6	4.0	desvio padrão em MPa
6.056	4.8	7.7	coeficiente variação em %
	4.8	7.7	coeficiente variação em %

- amostragem no terço médio do volume do caminhão
- exemplo → NBR 11562:1990. Fabricação e Transporte de Concreto para Estruturas de Centrais Nucleoelétricas. (*Bureau of Reclamation*)

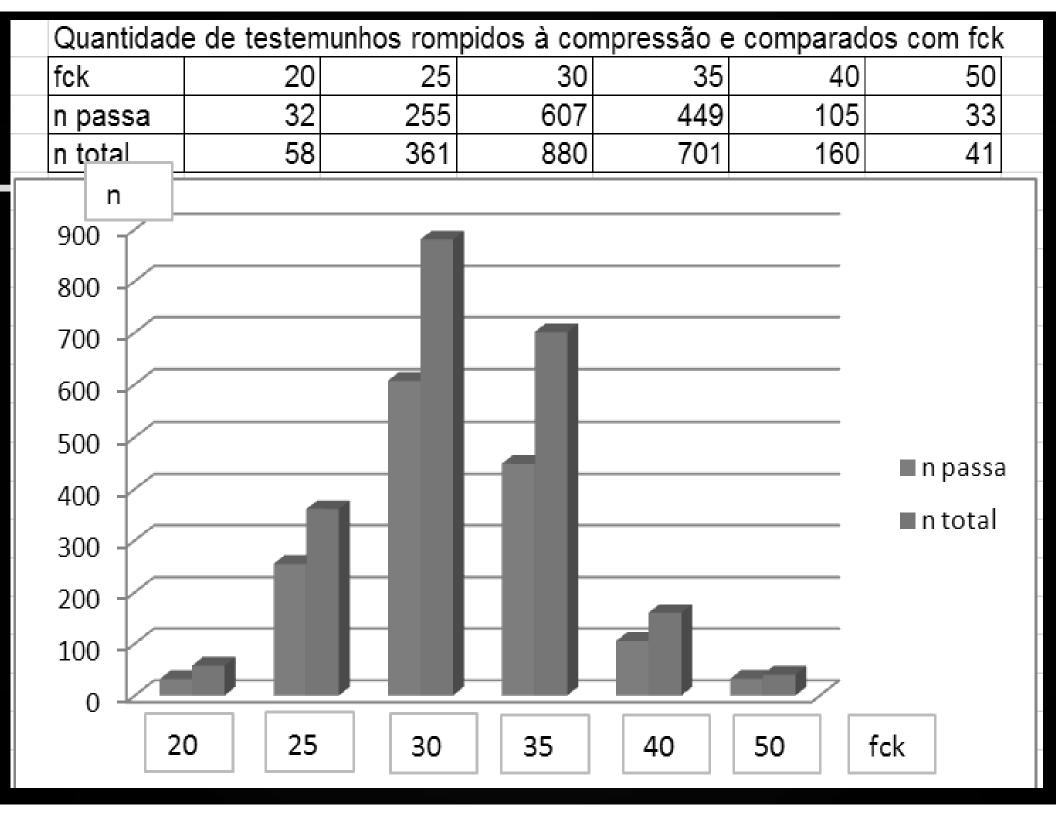
"desvio relativo à média de 7,5% para resistência à compressão dentro do balão do caminhão betoneira (40MPa → 37MPa a 43MPa)"

f_c

valor duvidoso, dependente de operações de ensaio, sujeito a efeitos climáticos, sujeito ao fator humano, variabilidade intrínseca, porém admitido como

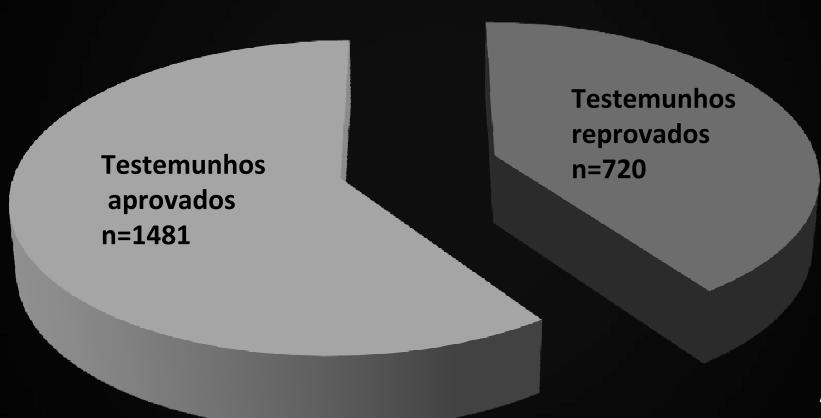
resistência máxima potencial na boca da betoneira

portanto na obra será sempre menor. quanto?



raciocinando por absurdo porém conforme com a teoria vigente da segurança estrutural e de acordo com as definições e conceitos atuais:

"uma Concreteira pode fornecer um caminhão com concreto de apenas 25MPa para uma estrutura de f_{ck} =30MPa e ainda estar conforme com o pedido, o contrato e a normalização "


porém

"um pilar não pode receber um concreto com $f_{ck,est}$ muito abaixo de f_{ck} !"

Total de testemunhos extraídos e ensaiados em 2009 comparando os resultados com fck especificado

ABCP 2009

NBR 7680:2006

Fatores intervenientes no valor de $f_{ck,ext}$ a partir de cps extraídos, ou seja, na produção do concreto, na execução da estrutura e nas operações de ensaio

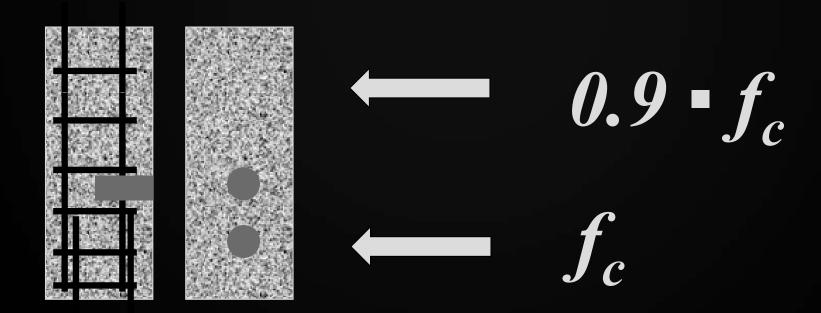
NBR 7680:2006

Segunda Verificação:

Testemunhos Extraídos

obs.: sempre uma avaliação de $f_{ck,ef}$ muito melhor, mais fiel!

NBR 7680:2007; NBR 12655:2006


- ✓ cilindrico, cúbico ou prismático;
- ✓ testemunhos devem ser íntegros (descartar → vazios, ninhos, madeira, armadura, falhas, fissuras, ...);
- $\checkmark f_c$ deve ser superior a 8MPa na ocasião da extração;
- ✓ $\Phi \ge 75$ mm e sempre $\Phi \ge 3D_{max}$ do agregado;
- recomendações rigorosas com relação aos equipamentos e operações de extração... cuidados! (água, fixação, ortogonalidade, quebra, transporte, sazonamento, corte, capeamento, retificação, ensaio,...)
- ✓ $1 \ge h/\Phi \ge 2$ (evitar montagem...Anexo A permite...)
- ✓ secos ao lab. ou saturados sup. seca → ambos 48h
- ✓ ensaio com total desagregação, observar e registrar com fotos

40

NBR 7680:2007; NBR 12655:2006

- √ não cortar armadura (pacômetro);
- evitar extrair de lajes, dar preferência a vigas;
- v pilares evitar topo e pé, extrair logo acima dos arranques;
- ✓ pilares evitar extrair mais de um, se necessário mesma prumada;

Dúvidas

FURO CONFORME CROQUI	PERF. SEM INTERRUPÇÃO	N° CP	NOTA FISCAL	DATA	FCK (mpa)	TAMANHO DO CP (cm)	LOCALIZAÇÃO DO FURO	BROCA (mm)	TAMANHO
千数	30	AF			70,0	15.0	POCO ELEVADOR PROKIND NO P33B E P34B (REFRENTE P5B)	ad	DO FURO APÓS
7	20	FB			0.0F	345	() Magazine 100)	002	EXTRAÇÃO (M)
7	2:	70			10.0	4.5		200	
7	29	CF			0.05	410		ad	
7	33	FE			J0,0	270		100	
F	3.	76			400	510		100	
7	4-	FG			70.0	130		100	
7	49	HF			f0,0	185		100	
7	5°	IF	1-211		700	95		100	757
7	52	75			JO:0	9,0		100	

OBS. A sequência da identificação é a mesma sequência da extração

* FORD IN CIADO NÃO O COBRIMENTO PORTIR DO ACO (COBRIMENTO NÃO COBRIMENTO NO ACO)

* CRTA COM ACO NA SURFICICIE

* CRTA COM ACO NA SURFICICIE

* CRTA COMENTRAÇÃO DE MATERIAIS FINO NO FORO (QUE NÃO MRESENTA NA BASE DO CRTE)

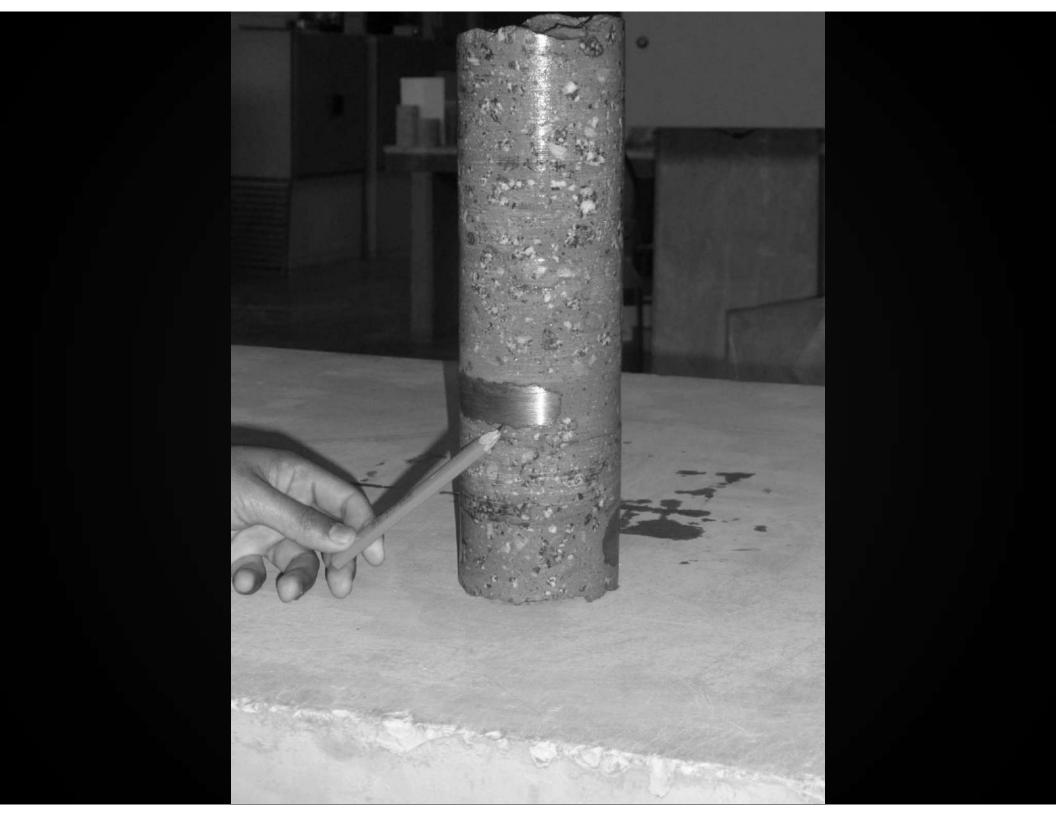
* CRT E NITA COMENTRAÇÃO DE MATERIAIS FINO NO FORO (QUE NÃO MRESENTA NA BASE DO CRTE)

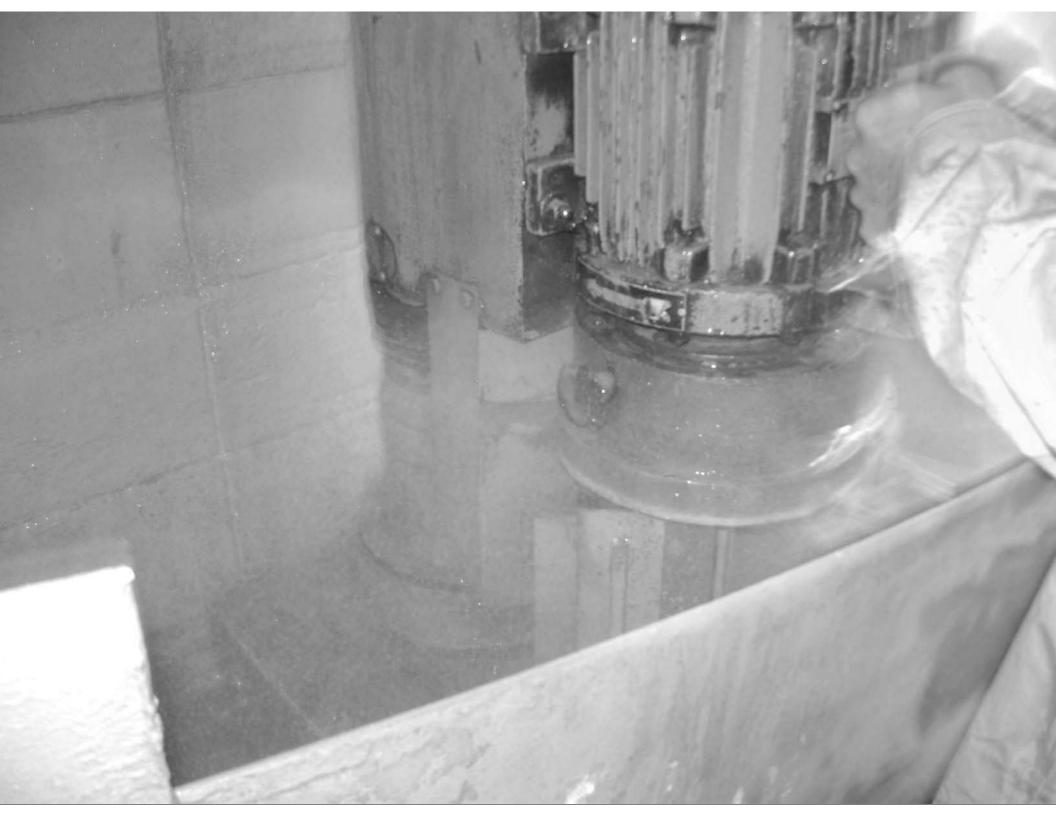
* CRT B COM FRATORA NO TORO

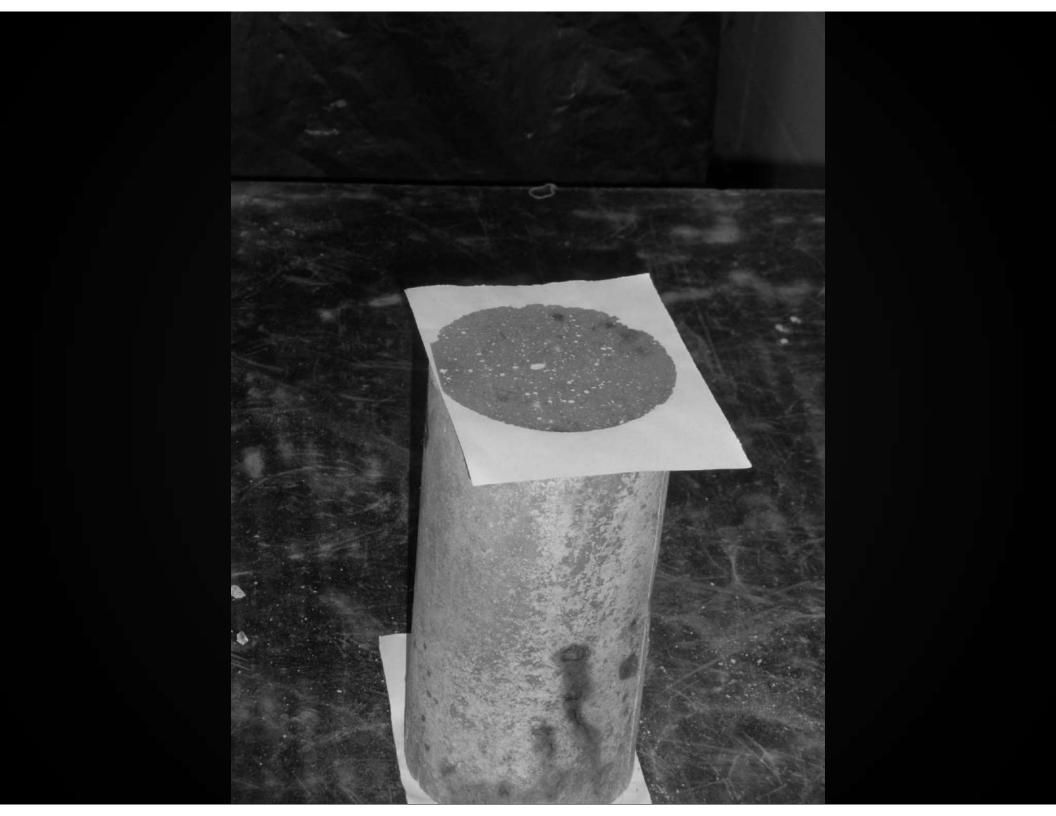
MAIS OBS NO VERSO

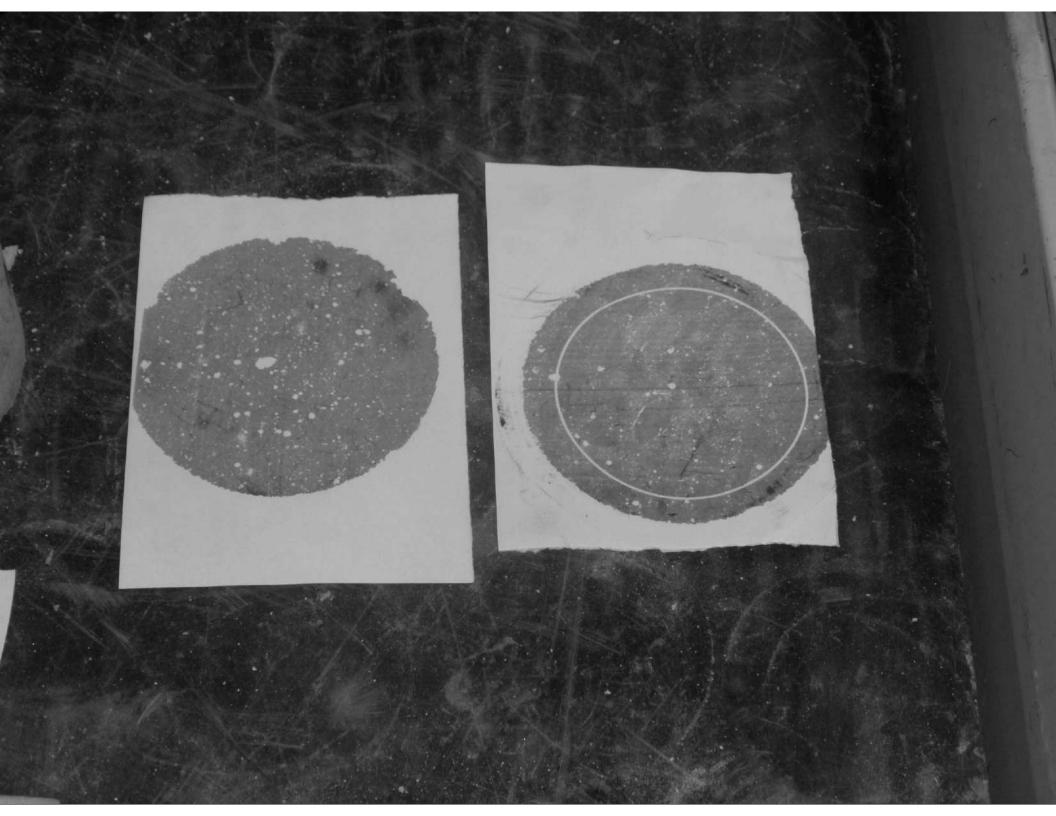
Responsável pela Extração: EXIRE C (MÁQUINA TYROLYT BROCA 80 on DE ALTON VIBAÇÃO

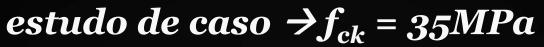
Acompanhamento Técnico:

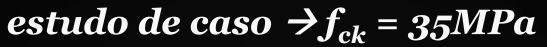


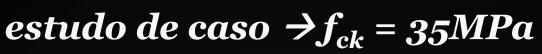




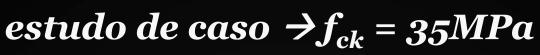








pilar	c. betoneira 1	c. betoneira 2	c. betoneira 3
P11	29.5	30.9	28.7
P12	31.6	32.2	32.6
P13	33.0	34.2	33.7
P11	34.3	34.5	35.3
P14	35.2	35.1	35.4
P14	35.4	35.6	35.6
P13	35.9	36.8	35.7
P12	37.4	37.2	36.7
P15	37.7	37.3	36.9
P16	37.9	38.5	38.7
f_{cm} (MPa)	<i>34.</i> 8	35.2	34.9
s _c (MPa)	2.8	2.4	2.8
v_c (%)	8%	7%	8%
$f_{ck,est}$ (MPa)	29.0	30.8	29.7



pilar	c. betoneira 1	c. betoneira 2	c. betoneira 3
P11	29.5	30.9	28.7
P12	31.6	32.2	32.6
P13	33.0	34.2	33.7
P11	34.3	34.5	35.3
P14	35.2	35.1	35.4
P14	35.4	35.6	35.6
P13	35.9	36.8	35.7
P12	37.4	37.2	36.7
P15	37.7	37.3	36.9
P16	37.9	38.5	38.7
f_{cm} (MPa)	34.8	35.2	34.9
s _c (MPa)	2.8	2.4	2.8
v_c (%)	8%	7%	8%
$f_{ck,est}$ (MPa)	29.0 → 31.9	30.8 → 33.9	<i>29.7 → 32.7</i>

pilar	c. betoneira 1	c. betoneira 2	c. betoneira 3
P11	29.5	30.9	28.7
P12	31.6	32.2	32.6
P13	33.0	34.2	33.7
P11	34.3	34.5	35.3
P14	35.2	35.1	35.4
P14	35.4	35.6	35.6
P13	35.9	36.8	35.7
P12	37.4	37.2	36.7
P15	37.7	37.3	36.9
P16	37.9	38.5	38.7
f_{cm} (MPa)	36.4	36.7	36.5
s _c (MPa)	1.5	1.4	1.3
v_c (%)	4	4	3
$f_{ck,est}$ (MPa)	33.8	33.3	35.2

pilar	c. betoneira 1	c. betoneira 2	c. betoneira 3
P11	29.5	30.9	28.7
P12	31.6	32.2	32.6
P13	33.0	34.2	33.7
P11	34.3	34.5	35.3
P14	35.2	35.1	35.4
P14	35.4	35.6	35.6
P13	35.9	36.8	35.7
P12	37.4	37.2	36.7
P15	37.7	37.3	36.9
P16	37.9	38.5	38.7
f_{cm} (MPa)	36.4	36.7	36.5
s _c (MPa)	1.5	1.4	1.3
v_c (%)	4	4	3
$f_{ck,est}$ (MPa)	$33.8 \rightarrow 37.2$	33.3 → 36.6	$35.2 \Rightarrow 38.7$

pilar	mesma betoneira	diferença
P102	32.2	- 8.0%
P113	32.2	-8.0%
P114	32.2	-8.0%
P112	33.5	-4.3%
P115	33.7	-3.7%
P168	33.7	-3.7%
P134	34.7	-0.8%
P101	39.2	+ 12.0%
f_{cm} (MPa)	33.9	
s _c (MPa)	2.3	
v_c (%)	7%	
$f_{ck,est}$ (MPa)	30.9 → 33.8	

SEGURANÇA

critérios de introdução da segurança no projeto e construção das estruturas de concreto, NBR 8681:2003 e NBR 6118:2003

70

Segurança

Valem critérios da NBR6118:2003, ou seja:

$$\sigma_{cd} = f_{cd} \bullet 0.85 = \frac{f_{ck}}{\gamma_c} \bullet 0.85$$

onde, na realidade o.85 deveria depender de cada caso

recordando que segundo a NBR 8681 item 5.2.3.1

$$f_{cd} = \frac{f_{ck}}{\gamma_c} = \frac{f_{ck}}{\gamma_{c1} \bullet \gamma_{c2} \bullet \gamma_{c1}}$$

$$\gamma_c = \gamma_{c1} \cdot \gamma_{c2} \cdot \gamma_{c3} = 1.4$$

fib(CEB-FIP) bulletin n.2. v.2. July 1999. Structural Concrete updating CEB/FIP Model Code 90 item 6.3 p. 59

(1,23)
$$\gamma_{c1}$$
 \longrightarrow $s_{c,ef}$ da estrutura $\geq s_{c,est}$

$$(1,05) \gamma_{c2} \longrightarrow f_{ck,ef} \neq f_{ck,est}$$

$$(1,16) \gamma_{c3}$$
 incertezas sobre **R**

Problema

Qual o $f_{ck,est}$ a ser adotado para revisão da segurança estrutural, uma vez conhecido o $f_{c,ext}$ a qualquer idade?

74

Revisão da segurança

CORREÇÃO (concreto da própria estrutura)

→ a NBR 6118 de 1978 permitia considerar :

$$f_{ck,est} = 1.15 \bullet f_{ck,ext}$$

→ o ACI 437:2003 Strength Evaluation of Existing Concrete Buildings no item 5.1.1 recomenda:

$$f_{ck,est} = 1.18 \bullet f_{cm,ext}$$

→ o ACI 318:2005 Building Code Requirements for Structural Concrete, nos itens 9.3 e 20.2, recomenda:

$$f_{ck,est} = 1.21 \ a \ 1.25 \ {}^{\bullet}f_{ck,ext}$$

Revisão da segurança

CORREÇÃO (concreto da própria estrutura)

→ a **fib**(CEB-FIP) bulletin n.2. v.2. July 1999. Structural Concrete. updating CEB/FIP Model Code 90, item 6.3 p.59 recomenda:

$$f_{ck,est} = 1.11 \ a \ 1.20 \ {}^{\bullet}f_{ck,ext}$$

→ a NBR 6118:2003 item 12.4.1, recomenda:

$$f_{ck,est} = 1.1 \, \bullet f_{ck,ext}$$

aceitando uma redução de 10% no $\gamma_{\mathbf{c}}$ em nome da maior representatividade de $f_{ck,\mathrm{ext}}$ em relação a $f_{ck,\mathrm{ef}}$

Revisão da segurança

CORREÇÃO (concreto da própria estrutura)

- → o EUROCODE 2. EN1992. Dec. 2004. Design of Concrete Structures. General Rules for Buildings. Annex A item A.2.3 → EN 13791 Assesment of Concrete Compressive Strength in Structures or in Structural Elements. p. 200, recomenda para revisão da segurança:
- sob controle rigoroso de geometria (excelente execução), revisar a segurança adotando:

$$\gamma_{\rm s} = 1.05 \, (ao \, invés \, de \, 1.15)$$

$$\gamma_c = 1.35$$
 (ao invés de 1.5) $\rightarrow \gamma_c = 1.26$

a partir de testemunhos extraídos revisar adotando:

$$f_{ck,est} = 1.18 \cdot f_{ck,ext}$$

Revisão da segurança resumo

norma	$f_{ck,est} = \eta \cdot f_{ck,ext}$	γ_s
NBR 6118:1978	1.10 a 1.15	1.15
NBR 6118:2003	1.10	1.15
ACI 318:2005	1.21 a 1.25	1.15
ACI 437:2005	1.18	1.15
Model Code CEB:1999	1.10 a 1.20	1.15
EUROCODE 2 & EN 13791:2004	1.18	1.05

78

Revisão da Segurança proposta

sugestão para o Concreto:

$$f_{ck,est} = 1.1 \ a \ 1.2 \ {}^{\bullet}f_{ck,ext}$$

→ adotar 1.1 para coef. variação do concreto na estrutura:

$$v_c \le 20\%$$
 ou $s_c \le 7.5MPa$

→ adotar 1.2 para coef. variação do concreto na estrutura:

$$v_c \le 10\%$$
 ou $s_c \le 4MPa$

→ permitido interpolar

Revisão da Segurança

sugestão para a ARMADURA:

$$\gamma_s = 1.05 \ a \ 1.15$$

→ adotar 1.15 para estruturas usuais:

→ adotar 1.05 para estruturas inspecionadas e conformes com as tolerâncias da NBR 14931:2003

→ permitido interpolar

Muitas vezes uma diferença de 3MPa nos testemunhos ou corpos-de-prova moldados tornam-se motivo de intransigências enquanto nas obras é comum:

Pontos para Discussão

Pontos para Discussão

Pontos para Discussão

Revisão da segurança idade?

CORREÇÃO

→ as NBR 8681 e NBR 6118:2003 consideram o efeito "Rüsch" como:

$$\sigma_{cd} = f_{cd} \bullet 0.85 = f_{cd} \bullet 0.75 \bullet 1.13$$

- → Carregamento de projeto aos 28dias;
- → Resistência do concreto cresce 13% de 28d a 100 anos (1.13);
- → Resistência do concreto decresce 25% de 28d a 100 anos (0.75);

Revisão da Segurança

CORREÇÃO

Proposta:

"Usar o coeficiente efetivo admitindo que o resultado de $f_{c,ext}$ já foi parcialmente afetado por efeito "Rüsch" e neste caso usar a fórmula modelo do Model Code CEB/FIP90, tanto para o cálculo da relaxação quanto para o cálculo do crescimento da resistência"

recomendações "bom senso"

- até 10% em pilares e vigas
- até 20% no caso de lajes
- são considerados "alertas" pois as "incertezas naturais" cobrem essas diferenças;
- diferenças dessa ordem jamais justificam paralizações na execução da obra;
- não justificam reforço
- lacksquare podem justificar pagar pelo f_{ck} menor, lembrando que:

NBR 8953:1992

Texto ABECE

ESTRUTURAS DE CONCRETO CONFORMIDADE DA RESISTÊNCIA DO CONCRETO

Idade

Como cresce a

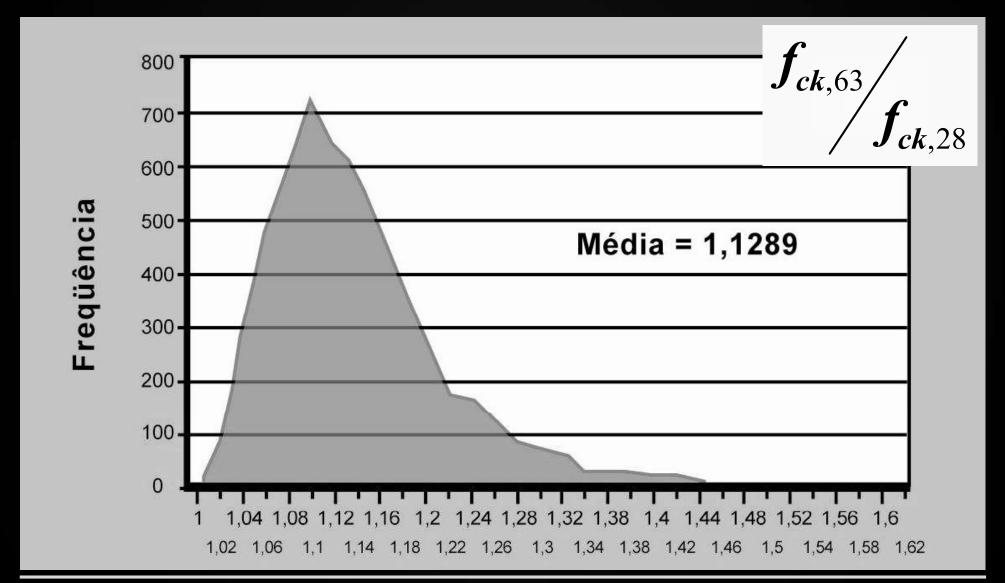
resistência com o

tempo?

Crescimento da Resistência

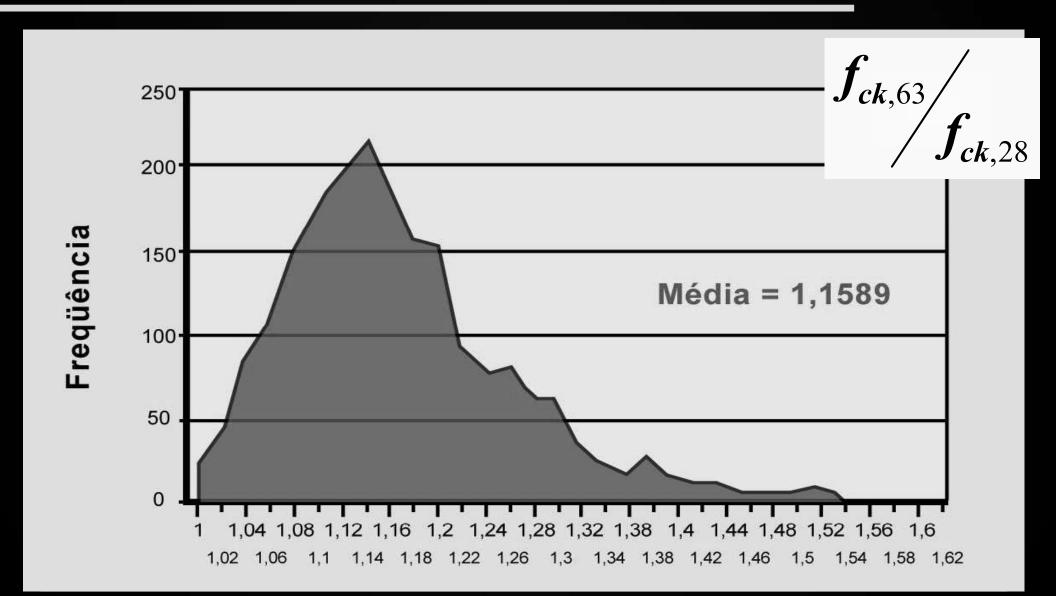
CEB – FIP Model Code 1990

<u>Bulletin d'Information 213/214, May 93</u>


$$\frac{f_{cm,t}}{f_{cm,28}} = e^{s*(1-\sqrt{\frac{28}{t}})}$$

CPV ARI	\rightarrow s	= 0,2	\rightarrow	1,22 > 100anos
CP I / II	\rightarrow S	= 0,25	\rightarrow	1,28 → 100anos
CP III / IV	\rightarrow S	= 0,38	\longrightarrow	1,45 → 100anos

Análise Geral


8.429 Registros Analisados, todos os cimentos

Análise

2.046 Registros Analisados, CP III

$$\beta_{1,t} = \frac{f_{cm,t_{\infty}}}{f_{cm,t}}$$

		28d
Rüsch (1960)		1,30
	- POZ & AF	1,45
CEB(1990)	• normal	1,28
	-ARI + CAR	1,22
NBR 6118:2003		1,20

93

primeiro edificio de concreto armado Paris, França → François Hennebique "nunca mais colapso por incêndio"

