

Examples of RILEM Technical Committees

145-WSM (BARTOS): Workability of special concrete mixes
149-HTS (UZIELLI): Diagnosis and repair of historic load-bearing timber structures
151-APC (OHAMA, PUTERMAN): Adhesion technology in concrete engineering - Physical and chemical aspects
157-PRC (FRANCKEN): Systems to prevent reflective cracking on pavement
162-TDF (VANDEWALLE): Test and design methods for steel fibre reinforced concrete
165-SRM (HENDRIKS): Sustainable application of mineral raw materials in construction
166-RMS(ROSSITER): Roofing membranes and systems
167-COM (GROOT): Characterisation of old mortars with respect to their repair

Examples of RILEM Technical Committees

178-TMC (ANDRADE): Testing and modelling chloride penetration in concrete

179-CSD (MÜLLER): Data bank of concrete creep and shrinkage 180-QIC (TAMAS): Qualitative identification of clinker and cement 181-EAS (BENTUR): Early shrinkage induced stresses and craking in cementitious systems 182-PEB (PARTL): Performance testing and evaluation of bituminous materials ATC (REINHARDT): Advanced testing of cement based materials during setting and hardening CRC (NIXON): Chemical reactions in concrete - Assessment, specification and diagnosis of alkali-reactivity

CSC (SKARENDAHL): Casting of self-compacting concrete

FHP (MARCHAND): Predicting the frost resistance of highperformance concrete structures exposed to numerous freezing and thawing cycles

TC 178

Testing and modelling chloride penetration into concrete

COMPARISON OF CHLORIDE TEST METHODS

	Laboratory	Responsible	Country	
1	BAM, Berlin,	Kühne, H.C. Maultzsch, M.	Germany	
2	Laboratoire Béton BOUYGUES TP - 1 Saint-Ouentin-en-Yvelines	Taibi, Yan	France	
3	BRANZ Ltd	Neil Lee	New Zealand	
4	CEFET, Federal Center of Technological Education of Paraíba	Rocha, G.	Brasil	LADURATURILS
5	Chalmers University of Technology	Tang, L.	Sweden	
6	EPUSP/ITA	Geimba de Lima, M.A Helene, Pl	Brasil	
7	Fac. Ingeniería, Universidad de la República, Montevideo	Derrégibus, M.T.	Uruguay	OURSTIONNAIRE
8	HBRE-IBM, Germany Institut für Baustofftechnologie, Hochschule, Bremen,	Kropp, J. Luckies, V.	Germany	QUESTIONAIRE
9	IBRI, The Icelandic Building Research Institute	Gudmundsson, G.	Iceland	In order to prepare the specimens for the IT in the appropriate number, size an
10	IETcc, Institute of Construction Science "Eduardo Torroja" (CSIC). Madrid	Castellote, M. Andrade, C. García de Viedma, P.	Spain	shape, it is very important that you fill in this questionnaire and send it to us a your convenience.
11	INSA-UPS. L.M.D.C. Génie Civil. Toulouse	Carcasses, M. Juliens, S. Francois, R.	France	a) Would you prefer to perform the tests either in duplicate or in triplicate specimens?
12	IPT - Instituto de Pesquisas Tecnológicas do Estado de S. Paulo S/A - Laboratório de Química de Materiais, Sao Paulo,	Quarcioni, V.	Brasil	DuplicateTriplicate LS
13	Italcementi S.p.A Italcementi Group, Laboratory of Brindisi	Borsa, M. Vendetta, S.	Italy	perform:
14	ITC, Instituto Técnico de la Construcción, S.A., Alicante,	López, M.	Spain	D1 🗵 R1 🗵 M1 🖂
15	L.C.P.C, Laboratoire Central des Points et Chausses, Paris	Baroghel-Bouny, V. Chaussadent, T	France	D1-P/M R2 M1-R
16	LNEC - Laboratório Nacional de Engenharia Civil, Lisboa	Salta, M. Vaz Pereira, E. Menezes, A.P. Garcia, N.	Portugal	D3 2 M4 2 D4 M5 2 M6 2 M7 M7
17	LTH, Lund Institute of Technology	Nilsson, L.O.	Sweden	c) How many, and which dosages are you going to test?
18	Politecnico di Milano - Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta".	Bertolini, L. Redaelli, E.	Italy	Hoy many dosages? 4
19	Queen's University Belfast, Northern Ireland,	Basheer P.A.M., Nanukuttan, S. V.	United Kingdom	OPC-1 E SLG (slag concrete) E
20	SP Swedish National Testing and Research Institute, BORAS	Tang, L.	Sweden	SF (sinca name) of OFC-2 E
21	TNO Built Environment and Geosciences	Polder, R. Hans Beijersbergen van Henegouwen	The Netherlands	d) Providing that you are going to test in a device type "cell", which is the diameter of the specimen that you need?
22	University of Zulia, Centro de Estudios de Corrosión., Maracaibo	Troconis, O. Millano, V. Linares, D. Tarantino, V.	Venezuela	100 mm (preferable för diffusion/migration cells)
23	University of Alicante, Department of Construction Engineering, Alicante,	Climent, M.A. De Vera, G.	Spain.	ey up you prefer to receive specimens or blocks to take cores from them?
24	University of Graz, Technische Versuchs- und Forschungsanstalt (TVFA), Graz	Tritthart, J.	Austria	(however, we can also core from blocks)
25	University of Leeds	Page, C	United Kingdom	f) Taking into account the number of devices that you have, your availability
26	University of Toronto. Concrete Materials Laboratory, Dept. of Civil Engineering, Toronto	Hooton, D. Perabetova, O Nytko, U	Canada	of time, etc , How long do you think it will take to perform the tests (for each dosage) that you are planning to make?
27	ZAG, Slovenian National Building and Civil Engineering Institute,	Caulek, K.	Slovenia	3 months (indicative)

Mixture proportions of concrete					
	1				
Kg/m ³	SF	OPC	FA	SL	
Cast by	CHALMERS	IETcc	LNEC	TNO	
Cement	399	400	340"	350	
	I-42.5 N V/SR/LA	I-42.5 R/SR	IV/B 32.5 R	III/B 42.5 LH HS	
Silica fume	21 (slurry)				
Fly ash					
Slag					
Water	168	180	153	157.5	
Sand	842.5 (0-8 mm)	742 (0-6 mm)	62 (0-2 mm)	70 (0-1 mm)	
			603 (0-4 mm)	790 (0-4 mm)	
Coarse aggregate	842.5 (8-16 mm)	1030 (6-16 mm) 619 (4-12 mm)		1040 (4-16 mm)	
			555 (12-25 mm)		
Total aggregate	1685	1772	1823	1830	
Super-plasticisers	3.4	4.8	4.1	3.9	
	Cementa 92M	Melcret 222	Rheobuild 1000	Cretoplast	
Air content	6%			1.5	
W/C	0.42	0.45			
W/B	0.40	0.45	0.45	0.45	
Strength (MPa)	63	45	52.6		
Slump (mm)		> 150			
Porosity (% vol)	9.87	7.68	12.7		
Casting date	November 2002	May 2003	June 2003	October 2003	
Delivered	May 2003	August 2003	October 2003	April 2004	

Lahel	Name of the	D./D	Device	Reference
Luber	Method/Standard	D_{s}/D_{ns}	Device	iterer enet
D1	Natural Diffusion Cell	Ds	Diffusion Cell	[3]*
*D1-P	Natural Diffusion Cell *For paste specimens	Ds	Diffusion Cell	[3]*
D2	NT Build 443	Dns	Immersion test	[14]
D3	Natural Diffusion Ponding	Dns	Ponding	[1]*
D4	Natural Diffusion Cell.	Dns	Diffusion Cell	[15]
R1	Resistivity		Resistivimeter,	[16]*
R1/M		Ds	potenciostat,	
R2	Monfore Cyclic Resistivity			[17]???
M1	ASTM C-1202-97		Migration cell	[1] [18]
M3	Mesure du coefficient de diffusion effectif des ions chlore par un essai de migration en milieu sature	Ds	Migration cell	[11]
M4	NT Build 492	Dns	Migration device	[19]
M5	Migration colourimetric method	Dns	Ponding	[20]*
M6	Multi-Regime method	Ds and Dns	Migration cell	[21]*
C1	Colourimetric methods	[Cl ⁻] at the front	Ponding	[22-24]*

	Su	umma	ary o	of meth	nods		
Label	Method	1.1.1.1 Vol tage	D _s /D _{ns}	Pre- treatment	Device	Specimen	Analysis
D1	Natural Diffusion Cell		Ds	Vacuum saturation with water	Cell Ups:1 M NaCl Down: distilled water	1-2 cm	Liquid sample
D1-P/M	Natural Diffusion Cell (Paste and Mortar)		Ds		Diffusion Cell Ups: 1M NaCl, NaOH Down: NaOH	0.3 cm	Liquid Sample
D2	NT Build 443		Dns	Ca(OH) ₂	Immersion 3M, 35 d	5 cm	Profile
D3	Natural Diffusion Ponding		Dns	Vacuum saturation with water	Ponding 1 M NaCl, 90 d	Any depth	Profile
D4	Measuring chloride diffusion coefficients from non-steady	Dns		Vacuum saturation with water	Cell Ups:NaCl, KOH and NaOH Down: KOH and NaOH	OH 2 cm	Profile
R1	Resistivity		>	Vacuum saturation with water	Two electrodes on the surface 5-60 V AC or DC	Any standardize d specimen	Resistivity
R2	Monfore Cyclic Resistivity						
M1	C-1202-91	60V		Vacuum saturation with water	Migration cell Catholyte: 3% NaCl Anolyte: 0.3 M NaOH	5.1 cm	Charge
M-R	Ds from Resistivity	5-60 V	Ds	Vacuum saturation with water	Two electrodes on the surface AC or DC	Any standardize d specimen	Resistivity
M3	Mesure du coefficient de diffusion effectif des ions chlore par un essai de migration en milieu sature	12 V	Ds	Vacuum saturation with water	Migration cell Catholyte: NaCl, KOH and NaOH Anolyte: NaOH, KOH	3 cm	Liquid sample
M4	NT Build 492	V variable	Dns	Vacuum saturation with (CaOH) ₂	Migration cell Catholyte: 10% NaCl Anolyte: 0.3 M NaOH	5 cm	Colorimetric
M5	Dns from Colourimetric, Method	Any V	Dns	Vacuum saturation with water	Ponding or cell Ups:1 M NaCl	Any	Colorimetric
M6	Multi-Regime Method	12 V	Ds and Dns	Vacuum Saturation with water	Migration cell Catholyte: 1M NaCl Anolyte: Distilled water	2 cm	Conductivity
C1	Natural Diffusion Ponding		Dns	Vacuum saturation with water	Ponding 1 M NaCl, 90 d	Any depth	Colorimetric

МО		D IN THE CC	MPARISO	
Model	Basis of the Model	Time dependence of	Time dependence	Chloride
characteristic		D or equivalent	of C_s	binding
Model 1	Square root, does	Yes	Yes	Yes
	not need a Diffusion			
	coeff.			
Model 2	Classical error	Yes	Yes	Apparent
	function			D
Model 3	Fick'second Law,	No	No	Apparent
	theoretical			D
Model 4	Fick'second Law,	Yes	Yes	No
	empirical			
Model 5	Fick'second Law,	Yes	Yes	Yes
	numerical			
Model 6	Fick'second Law,	No	Yes	Yes
	numerical			
Model 7	Fick'second Law,	Yes	Yes	No
	numerical			
Model 8	Fick'second Law,	Yes	No	Yes
	analytical			

 MODEL FOR CHLORIDE INGRESS

 Cs is a boundary condition

 Image: conditin

 Image:

Example of quivalence between diffusivity-corrosion rate through resistivity							
$D_{app} =$	$D_{app} = \frac{26 \cdot 10^{-5}}{\rho_e \cdot r_b} \swarrow I_{corr} = \frac{26}{\rho_e}$						
D _{app} (cm²/s)	D _{app} 0.1E-8 1E-8 10E-8 (cm ² /s)						
I _{corr} 1 10 100 (μ m/year)							

END