Structural Service Life Aspects

WORKSHOP REPORT (Summary)

HILTON HOTEL, São Paulo

November, 10 and 11, 1999

BRAZIL

1

fib	5 -	Commission
-----	-----	------------

Structural Service Life Aspects

<u>Objectives</u>

Stimulate the gathering of Brazilian experts to discuss topics related to Service Life of Concrete Structures

Promote the exchange of technical experiences between the experts from different countries

fib 5 - Commission				
Task 1 - Service Life Fundamentals and Design				
INVITED PAPERS:				
Service life criteria in the new Brazilian design code for concret				
structures Prof. Paulo Helene / BRAZIL				
Chloride ingress: Laboratory and field aspects				
Prof. André Guimarães / BRAZIL				
Prof. Paulo Helene / BRAZIL				

Task 1 - Service Life Fundamentals and Design

DISCUSSION:

Service life in codes

Prof. Antonio Carmona Filho / BRAZIL

The Portuguese approach to durability design of concrete structures

Dr. Arlindo Gonçalves / PORTUGAL

Provisions and controls for durable concrete structures Dr. Roberto J. Torrent / ARGENTINA

Chloride ingress. A case study – The Casqueiro bridge Prof. Fernando Stucchi / BRAZIL

fib 5 - Commission				
Task 1 - Service Life Fundamentals and Design				
DISCUSSION:				
Crack pattern as diagnostic tool in damage study				
Prof. Antonio C. R. Laranjeiras / BRAZIL				
In situ control of the elasticity modulus of concrete				
Prof. João Gaspar Djanikian / BRAZIL				
Use of welded wire mesh as partition walls anchorage				
Prof. Jonas S. Medeiros / BRAZIL				
Prof. Luiz S. Franco / BRAZIL				

Task 2 - Construction for Service Life

INVITED PAPERS:

Mix design to reduce carbonation

Prof. Geraldo Cechella Isaia / BRAZIL

Coatings to protect concrete against carbonation Prof. Claudio S. Kazmierczak / BRAZIL

Service life prediction of structures reinforced with stainless steel rebars.

Eng. Leonel Tula / CUBA Prof. Paulo Helene / BRAZIL

Autogenous shrinkage – A threat to high performance concrete? Dr. Wellington L. Repette / CANADA

fib 5 - Commission				
Task 2 - Construction for Service Life				
DISCUSSION:				
Mix Design to Reduce Carbonation Prof Claudio S. Kazmierczak / BRAZIL				
Thinking about Mix Design to Reduce Carbonation Dr. Carlos E. S. Tango / BRAZIL				
Carbonation on Concrete	Prof. Jefferson B. L. Liborio / BRAZIL			

Task 2 - Construction for Service Life

DISCUSSION:

Investigations on Inhibitors to Increase the Service Life of Concrete

Prof. Vladimir A. Paulon / BRAZIL

Coatings to Protect against Carbonation Prof. Giovanni Palermo / BRAZIL

11

fib 5 - Commission Task 3 - Assessment and Maintenance of Concrete Structures INVITED PAPERS: Prediction of Residual Service Life Prof. Nelson Díaz Brito / CUBA Prof. Paulo Helene / BRAZIL

Task 3 - Assessment and Maintenance of Concrete Structures

DISCUSSION:

Recommendation for Maintenance of Marine Constructions Prof. André Guimarães / BRAZIL

Task 4 - Repair, Strengthening and Upgrading of Concrete Structures

DISCUSSION:

The importance of good protection measures for prestressed elements Prof. Antonio C. R. Laranjeiras / BRAZIL

Learning from some cases of bound and unbounded prestressing

Prof. Fernando Stucchi / BRAZIL

15

fib 5 - Commission São Paulo Workshop - Final Recommendations TASK 1: Stimulate the incorporation of durability criteria on codes Divulge the use of existing models for performance prognosis and service life estimation; Research new probabilistic methods for improved service life prediction; Work with design specialists to increase awareness of durability aspects Define adequate parameters to measure service life; Divulge case-stories; Encourage the development of standards applicable in the area.

Service Life Criteria in the New Brazilian Design Code for Concrete Structures

Aging

The main degradation mechanisms are:

→ for concrete: dissolution, sulfate attack, biological attack and alkali-aggregate

→ for reinforcement steel: carbonation and chloride induced corrosion

It is important to observe how useful can be to consider independently the two mechanisms or to try to determine the synergetic effects of their interaction

fib 5 - Commission					
Service Life Criteria in the New Brazilian Design Code for Concrete Structures					
Environment aggressiveness classes					
Class	Aggressiveness Deterioration Ris				
Ι	slight	slight			
II	moderate	small			
III	high	high			
IV	severe	very high			
21					

fib 5 - Commission						
Exposure classification						
	Micro-clime					
	Inside H	Buildings	Outside Buildings			
Macro-clime	Dry	Wet	Dry	Wet		
	$HR \le 65\%$	or cycles	$HR \le 65\%$	or cycles		
		wet and dry		wet and dry		
Rural	Ι	Ι	Ι	II		
Urban	Ι	II	Ι	II		
Sea coast	II	III		IIII		
Industry	II	III	II	III		
Particular	II	III or IV	III	III or IV		
Splash zone				IV		
Under water				T		
> 3m						
Soil			I	Wet and cont.		
				11, 111 or 1V		

fib 5 - Commission					
Service Life Criteria in the New Brazilian Design Code for Concrete Structures					
Concrete classification					
			Resistance to:		
Concrete class	$\mathbf{f}_{\mathbf{ck}}$	W/C	Carbonation	Chloride	
			additions		
Dumahla	> 050	< 0.20	< 100/ flar ash	\geq 20% fly ash	
Durable	≥C50	≤ 0.38	$\leq 10\%$ fly ash	$\geq 60\%$ slag	
	C45		< 150/ flyr och	> 100/ fly och	
Resistant	C40	≤ 0.50	$\leq 15\%$ fly ash $\leq 15\%$ slag	$\geq 10\%$ Hy ash	
	C35			\geq 35% slag	
Normal	C30	≤ 0.62	free	free	
	C25			пее	
No durable	\leq C20	free	free	free	

fib 5 - Commission					
Service life prediction of structures reinforced with stainless steel rebars					
Example of Service Life Calculation. Times bigger the service life of <i>Stainless Steel</i> variant					
Structure	Elements	Service Life			
		Designing (t ₀)	Serviceability (<i>t</i> ₁)	Final (<i>t_f</i>)	
Marine pier	Column and beam	47	36	5	
Tank (14% Cl ⁻)	Wall	3	2.5	2	
	Slab	8	11	8	