IIIº SICEM 2010

O Concreto e a Sustentabilidade das Estruturas

Paulo Helene

Diretor PhD Engenharia Prof. Titular Universidade de São Paulo USP Conselheiro Instituto Brasileiro do Concreto IBRACON Member fib(CEB-FIP) Service Life of Concrete Structures Presidente ALCONPAT

Aracajú 27 de agosto de 2010 UFS

1

O Concreto e a Sustentabilidade na Construção Civil

Como pode o setor de concreto contribuir para o movimento global de "sustentabilidade" na construção civil?

- \Rightarrow European Concrete Platform ASBL. Sustainable Benefits of Concrete Structures. Feb. 2009
- → The Concrete Centre. The Environmental, Social and Economic Sustainability Credentials of Concrete. Dec. 2009
- → Comitê Técnico de Meio Ambiente do IBRACON. 1996-2009. Presidente: Prof. Dr. Salomon Mony Levu

Direitos Reservados 2009 2

O Concreto e a Sustentabilidade na Construção Civil

O que é LEED? Porque controla o edificio e não a estrutura ou a construção?

Direitos Reservados 2009

3

3

Paradoxo!

Como o consumo de cimento e de concreto que são utilizados como índices de desenvolvimento de uma nação, podem, ao mesmo tempo serem utilizados como índices de degradação do meio ambiente?

Uma das respostas está em pensar na estrutura, na obra, no produto final, e não nos materiais isoladamente

Direitos Reservados 2009

4

Protocolo de Kyoto

1997 → Protocolo de Kyoto

Em 2012 emitir 6% menos gases estufa que em 1990 → países desenvolvidos.

Direitos Reservados 2009

5

5

IPCC Reports 2007

According to IPCC May 4, report, the worst effects of global warming can be avoided if:

- GHG emissions to peak in 15 years, and fall to 50% of current levels by 2050.
- Limit temperature increase to 1.6°C
- Above actions will stabilize GHG emissions below 490 ppm, the current concentration being about 430 ppm.

 $\textbf{\rightarrow} \mathit{IPCC} \textbf{\rightarrow} \mathit{Intergovernmental Panel on Climate Change}$

 \rightarrow UNEP \rightarrow United Nations Environmental Programme

 \rightarrow WMO \rightarrow World Meteorological Organization

Direitos Reservados 2009

6

Qual o problema?

Aquecimento Global (Global Warming) no qual a indústria tem contribuição destacada ao lado do chamado "modo de viver" de vários dos cidadãos ingênuos que vivem nos países desenvolvidos.

Atualmente os países desenvolvidos emitem cerca de 66% do total de gases estufa do planeta e se considerado per capita essa contribuição nefasta pode chegar a 80%.

"Weather Makers, by Tim Flannery. 2005"

Direitos Reservados 2009

7

7

Como reduzir o aquecimento global?

- 1. reduzir emissão de gases estufa
- 2. reduzir energia consumida
- 3. reduzir consumo de recursos naturais não renováveis
- 4. mudar o "modo de viver de alguns"

Direitos Reservados 2009

8

ደ

- 1. Como reduzir emissão de gases estufa, sem prejudicar desenvolvimento e qualidade de vida?
 - Sequestrar o CO₂ gerado nos processos industriais

ou

 Reduzir as emissões de GHG (gás estufa) nos processos industriais e no modo de viver de alguns

Direitos Reservados 2009

9

9

Fixação (sequestro) de CO₂

- Trata-se de procedimentos de captura das emissões de GHG e fixação destes gases na superfície da crosta terrestre ou enterrados no solo
- O próprio concreto e as argamassas de base cimento sequestram e fixam CO₂ através dos inevitáveis processos de carbonatação (CaO.CO₂)
- Ainda não há procedimentos viáveis para sequestro de CO₂ em larga escala nas indústrias (Calera Process).

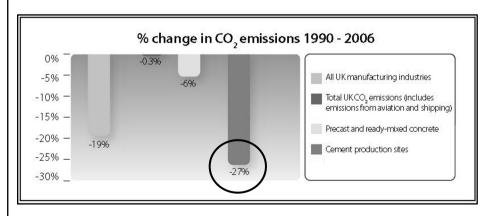
Direitos Reservados 2009

10

Como reduzir as emissões de GHG (gás estufa) nos processos industriais?

Atuando sobre a fabricação dos materiais constitutivos das estruturas de concreto:

- cimento
- agregado miúdo
- agregado graúdo
- água;
- aditivos;
- armadura / aço;
- fôrmas


Direitos Reservados 2009

11

11

Sustentabilidade e concreto:

Situação no Reino Unido

The Concrete Centre

Direitos Reservados 2009

12

Sustentabilidade na Construção Civil

- 1. reduzir desperdício na construção civil
- 2. aperfeiçoar processos de fabricação de cimento e aço
- 3. reduzir consumo de aço, madeira e cimento
- 4. aumentar uso de adições e aditivos
- 5. aumentar uso de agregados reciclados
- 6. aumentar uso de concreto de elevada vida útil
- 7. aumentar uso de concreto de alta resistência

Direitos Reservados 2009

13

13

Desperdício

O desperdício no concreto é de 2% enquanto na Construção Civil (alvenarias, pisos, etc.) pode ser de...

Direitos Reservados 200

14

Alternativas para tornar as Estruturas de Concreto ainda mais "verdes"

- 1. reduzir desperdício na construção civil
- 2. aperfeiçoar processos de fabricação de cimento e aço
- 3. reduzir consumo de madeira, aço e cimento
- 4. aumentar uso de adições e aditivos
- 5. aumentar uso de agregados reciclados
- 6. aumentar uso de concreto de elevada vida útil
- 7. aumentar uso de concreto de alta resistência

Reduzir.Reaproveitar.Reciclar.Raciocinar

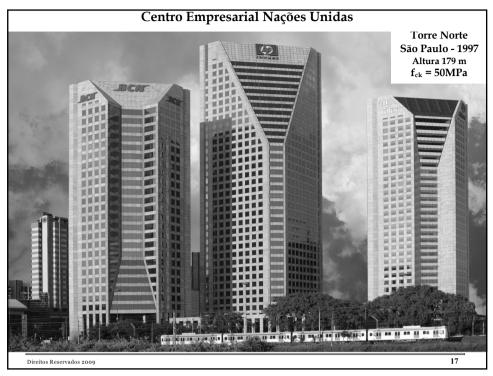
Direitos Reservados 2009

15

15

Carbonatação

$$e = 2,0 cm$$


$$f_{ck}$$
= 15 MPa $\rightarrow t$ = 8 anos

$$f_{ck}$$
= 50 MPa $\rightarrow t$ = 250 anos

$$f_{ck}$$
= 25 MPa \rightarrow t = 38 anos

Direitos Reservados 2009

16

Sustainable Development

"Increasing service life of concrete structures we can preserve the natural resources.

If we develop the design and construction ability we can get concrete structures with 500 years service life. Doing this we can multiply by ten our productivity which means preserve the 90% of them"

Kumar Mehta Reducing the Environmental Impact of Concrete Concrete International. ACI, v.23, n. 10, Oct. 2001. p.61-66

Direitos Reservados 2009

20

20

Alternativas para tornar as Estruturas de Concreto ainda mais "verdes"

- 1. reduzir desperdício na construção civil
- 2. aperfeiçoar processos de fabricação de cimento e aço
- 3. reduzir consumo de madeira, aço e cimento
- 4. aumentar uso de adições e aditivos
- 5. aumentar uso de agregados reciclados
- 6. aumentar uso de concreto de elevada vida útil
- 7. aumentar uso de concreto de alta resistência

Direitos Reservados 2009

21

Como tornar as estruturas de concreto ainda mais sustentáveis?

Empregando concreto de alta resistência HSC

Direitos Reservados 2009

22

22

As Estruturas de Concreto e a Sustentabilidade

CO₂?

•Energia?

•Recursos naturais?

•Vida Útil?

(Life Cycle Analysis)

Direitos Reservados 2009

23

As Estruturas de Concreto e a Sustentabilidade

Pilar para 500t

$$f_{ck}$$
 = 20MPa

$$f_{ck}$$
 = 50 MPa

Direitos Reservados 2009

24

24

Considerando um pilar central típico de um edifício de 20 andares secção quadrada, 3m de altura, armadura principal

Força normal característica = 500 tf

	→ total do pilar		
20	o.4 → 49kg	71.8 x 71.8	72 x 72
50	0.4 → 24kg	46.9 x 46.9	50 x 50
20	4.0 → 255kg	51.2 x 51.2	52 x 52
50	4.0 → 151kg	39.5 x 39.5	40 x 40

As Estruturas de Concreto e a Sustentabilidade

$f_{ck} = 20\text{MPa}$

Cimento = 280 kg/m3 Areia = 845 kg/m3 Brita = 1036 kg/m3 Água = 210 kg/m3

Direitos Reservados 2009

26

26

As Estruturas de Concreto e a Sustentabilidade

$$f_{ck} = 50$$
MPa

Cimento = 420 kg/m3 Areia = 801 kg/m3 Brita = 1010 kg/m3 Água = 160 kg/m3

Direitos Reservados 2009

Emissões gasosas e energia consumida

Material	NOx (kg/t)	CO ₂ (kg/t)	GWP (kg/t)	Energia consumida (kWh/t)
Clinquer Portland (≈ CP I)	1,85	855	1447 (880)	998
ferro gusa (minério) CA 50 & CA 60 (sucata)	4,43	1588 380	3006 719	5.060 20.000

*Global warming potential (GWP) is a measure of how much a given mass of $\underline{greenhouse\ gas}$ is estimated to contribute to $\underline{global\ warming}$. It is a relative scale which compares the \underline{gas} in question to that of the same mass of $\underline{carbon\ dioxide}$.

Direitos Reservados 2009 28

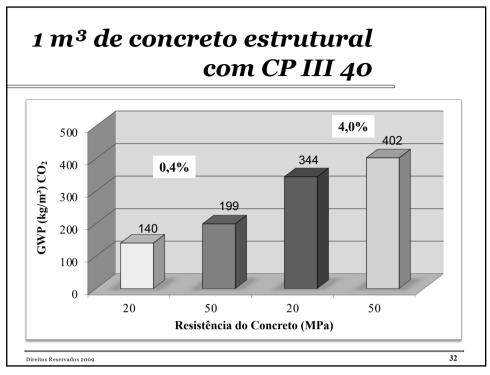
28

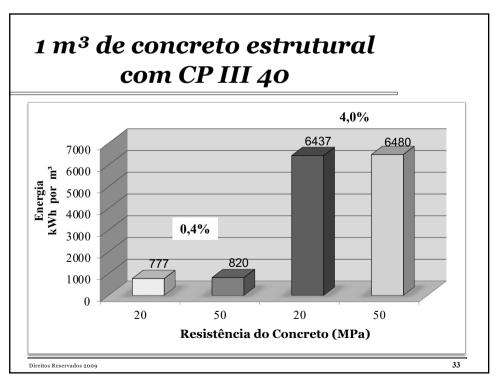
Concreto estrutural fck 20MPa

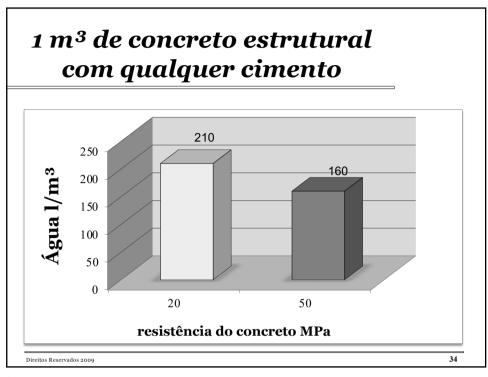
	Para 1 m ³	GWP kg/t	GWP kg/m³	Energia kWh/m³
Cimento CP I	280kg	1447	405	280
Areia	845kg	0	0	1
Pedra	1036kg	0	0	12
Água	210kg	0	0	0
Aço	32kg		23	640
	315kg	719	226	6300
Formas 12 m²/m³ 6 reutilizações chapa de1,4cm	0,0280 m²	o	O	43
TOTAL			428	933
TOTAL			631	6636

Concreto estrutural fck 50MPa

	Para 1 m ³	GWP kg/t	GWP kg/m³	Energia kWh/m³
Cimento CP I	420kg	1447	607	419
Areia	801kg	0	0	3
Pedra	1010kg	0	0	12
Água	160kg	0	0	О
Aço	32kg	51 0	23	640
	315kg	719	226	6300
Formas 12 m²/m³ 6 reutilizações chapa de1,4cm	0,0280 m²	o	o	43
TOTAL			630	1117
TOTAL			833	6777

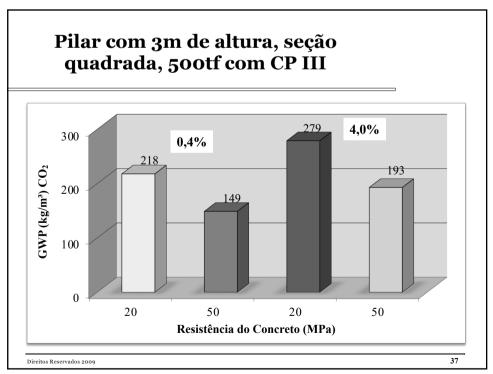

30

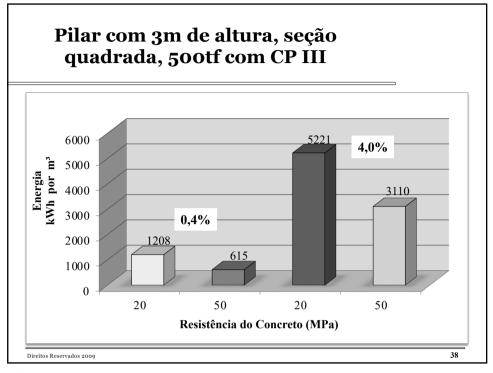

1 m³ de Concreto estrutural

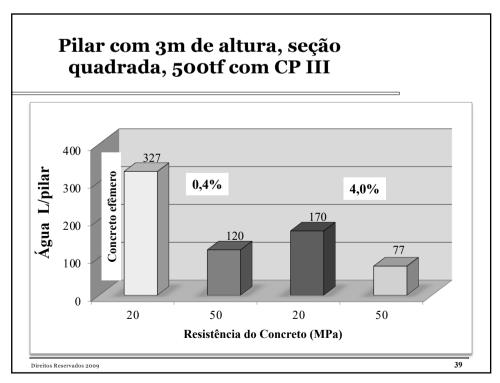

Material	Tipo	f_{ck} MPa	GWP kg/m³	Energia kWh/m³
concreto armado	CP I	20	428 / 631	933 / 6636
concreto armado	CP III	20	140 / 344	777 / 6437
concreto armado	CP I	50	630 / 833	1117 / 6777
concreto armado	CP III	50	199 / 402	820 / 6480
				0,4% & 4% de taxa de armadur

31

Direitos Reservados 2009

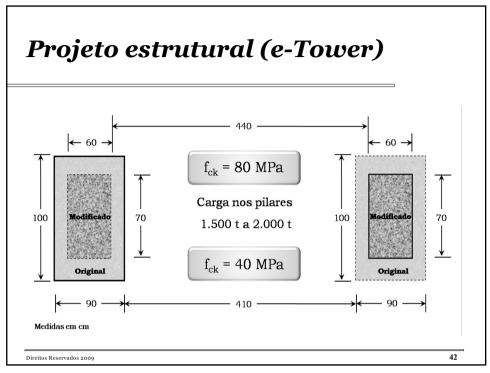


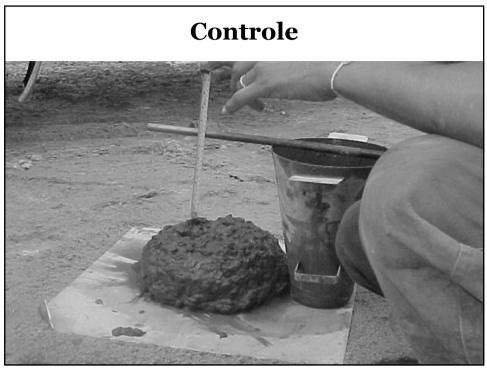

0,4% armad	ilar cor lura, 50		CP III	=
Material	f_{ck} MPa	seção cm	energia kWh	GWP kg
concreto armado	20	72x72	1208	218
concreto armado	50	50x50	615	149


Pilar com 3m 4% armadura, 500tf com CP III

Material	f _{ck} МРа	Seção cm	energia kWh	GWP kg
concreto armado	20	52x52	5221	279
concreto armado	50	40x40	3110	193

36





e-Tower Edifício e-Tower SP 42 andares heliponto piscina semi-olímpica academia de ginástica 2 restaurantes concreto colorido fek pilares = 80 MPa

Economia de Recursos Naturais

Original:

 f_{ck} = 40MPa seção transversal → 90cm x 100cm

 $0,90m^{2}$

HPC / HSC:

 $f_{ck} = 80$ MPa

seção transversal → 60cm x 70cm

0,42m²

Direitos Reservados 2009

46

46

Sustentabilidade

- > 70% menos areia
- > 70% menos pedra
- > 53% menos concreto
- > 53% menos água
- > 20% menos cimento
- > 31% menos área de fôrma

Direitos Reservados 2009

47

Sustentabilidade

> 25% mais de reaproveitamento de fôrma

- > 43% menos aço
- > 16 vagas a mais
- > 1000% vida útil maior
- > 100% desforma mais rápida

Direitos Reservados 2009

48

48

Pontos para Discussão

- 1. Índice de "sustentabilidade" do concreto?
 - \rightarrow GHG/GW; kWh; Água; por kg \rightarrow furado! demonstrado.
 - → GHG/GW; kWh; Água; por m³ → furado! demonstrado.
 - → GHG/GWP; kWh; Água: por (m³.MPa) ou por (Mg.MPa)

índice	20 MPa	50 MPa
GHGGWP / m³-MPa ou Mg.MPa	24 / 10	12 / 5
kWh / m³-MPa ou Mg,MPa	360 / 153	146 / 61
Água / m³-MPa ou Mg.MPa	10 / 4,3	3 / 1,3

Direitos Reservados 2009

49

Pontos para Discussão

- 1. Índice de "sustentabilidade" do concreto?
 - \rightarrow GHG/GW; kWh; Água; por kg → furado! demonstrado.
 - → GHG/GW; kWh; Água; por m³ → furado! demonstrado.
 - → GHG/GWP; kWh; Água: por (m³.MPa) ou por (Mg.MPa)

índice	20 MPa	50 MPa
GHGGWP / m³-MPa ou Mg.MPa	24 / 10	12/5
kWh / m³·MPa ou Mg.MPa	360 / 153	58% 146 / 61
Água / m³-MPa ou Mg.MPa	10 / 4,3	3 / 1,3

Direitos Reservados 2009 50

50

Pontos para Discussão

Índice de "sustentabilidade" da estrutura de concreto?
 → GHG/GW; kWh; Água; por pilar de 500tf

índice	20 MPa	50 MPa
GHGGWP / pilar 500tf (0,4%)	218	149
GHGGWP / pilar 500tf (4,0%)	279	193
kWh/ pilar 500tf (0,4%)	1208	615
kWh/ pilar 500tf (4,0%)	5221	3110 4570
água / pilar 500tf (0,4%)	327	120
água/ pilar 500tf (4,0%)	170	77

Pontos para Discussão

- 1. Adotar algo do tipo CO2/Mpa → furado
- Fixar um concreto de referência?
 20MPa; CP I; Slump 100mm; brita 2; sem aditivo
- 3. Fixar uma estrutura de referência: pilar, uma viga, uma laje?
- 4. Fazer a análise completa com formas, aço, espaços, reaproveitamentos, etc.?

Direitos Reservados 2009

52

52

Resumindo

- A Engenharia de Concreto tem caminhado na direção certa?
- 2. A Engenharia de Concreto tem conhecimento de sua importância?
- 3. Como pode atuar para focar ainda mais?
- 4. È uma grande oportunidade de pesquisa na área de Engenharia de Materiais no Brasil?

Direitos Reservados 2009

53

- ✓ Qualidade de vida
- ✓ Economia de recursos
- ✓ Segurança / Robustez
- √ Compromisso Ambiental

District Description

54

√Adições

✓Aditivos

✓ Coprocessamento

✓HSC / HPC

✓ Durabilidade

Direitos Reservados 2009

Resumindo

- A Engenharia de Concreto tem caminhado na direção certa?
- 2. A Engenharia de Concreto tem conhecimento de sua importância?
- 3. Como pode atuar para focar ainda mais?
- 4. È uma grande oportunidade de pesquisa na área de Engenharia de Materiais no Brasil?

Direitos Reservados 2009

56

56

Água Concreto Alimentos per capita volume → importância social

Direitos Reservados 2009

Resumindo

- A Engenharia de Concreto tem caminhado na direção certa?
- 2. A Engenharia de Concreto tem conhecimento de sua importância?
- 3. Como pode atuar para focar ainda mais?
- 4. È uma grande oportunidade de pesquisa na área de Engenharia de Materiais no Brasil?

Direitos Reservados 2009

58

58

>sequestro de CO₂
>economia energia
>processo ?
>aumentar a ecoeficiência
no uso

Direitos Reservados 2009

Resumindo

- A Engenharia de Concreto tem caminhado na direção certa?
- 2. A Engenharia de Concreto tem conhecimento de sua importância?
- 3. Como pode atuar para focar ainda mais?
- 4. È uma grande oportunidade de pesquisa na área de Engenharia de Materiais no Brasil?

Direitos Reservados 2009

60

60

- ✓ Referência mundial → cimento + ecoeficiente
 - ✓ É o setor mais competitivo do Brasil
 - ✓ Tem os melhores centros de pesquisa da AL
 - ✓ Tem recursos para pesquisa
 - ✓ Paga bem os pesquisadores

Direitos Reservados 2009

